Two Regulators of Vibrio parahaemolyticus Play Important Roles in Enterotoxicity by Controlling the Expression of Genes in the Vp-PAI Region
نویسندگان
چکیده
Vibrio parahaemolyticus is an important pathogen causing food-borne disease worldwide. An 80-kb pathogenicity island (Vp-PAI), which contains two tdh (thermostable direct hemolysin) genes and a set of genes for the type III secretion system (T3SS2), is closely related to the pathogenicity of this bacterium. However, the regulatory mechanisms of Vp-PAI's gene expression are poorly understood. Here we report that two novel ToxR-like transcriptional regulatory proteins (VtrA and VtrB) regulate the expression of the genes encoded within the Vp-PAI region, including those for TDH and T3SS2-related proteins. Expression of vtrB was under control of the VtrA, as vector-expressed vtrB was able to recover a functional protein secretory capacity for T3SS2, independent of VtrA. Moreover, these regulatory proteins were essential for T3SS2-dependent biological activities, such as in vitro cytotoxicity and in vivo enterotoxicity. Enterotoxic activities of vtrA and/or vtrB deletion strains derived from the wild-type strain were almost absent, showing fluid accumulation similar to non-infected control. Whole genome transcriptional profiling of vtrA or vtrB deletion strains revealed that the expression levels of over 60 genes were downregulated significantly in these deletion mutant strains and that such genes were almost exclusively located in the Vp-PAI region. These results strongly suggest that VtrA and VtrB are master regulators for virulence gene expression in the Vp-PAI and play critical roles in the pathogenicity of this bacterium.
منابع مشابه
Bile Acid-Induced Virulence Gene Expression of Vibrio parahaemolyticus Reveals a Novel Therapeutic Potential for Bile Acid Sequestrants
Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2) encoded in pathogenicity island (Vp-PAI) is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate ...
متن کاملVibrio parahaemolyticus VtrA is a membrane-bound regulator and is activated via oligomerization
Vibrio parahaemolyticus is a Gram-negative pathogen that causes food-borne gastroenteritis. A major virulence determinant of the organism is a type III secretion system (T3SS2) encoded on a pathogenicity island, Vp-PAI. Vp-PAI gene expression is regulated by two transcriptional regulators, VtrA and VtrB, whose N-terminal regions share homology with an OmpR-family DNA-binding domain. VtrA activa...
متن کاملTranscriptional profiling of Vibrio parahaemolyticus exsA reveals a complex activation network for type III secretion
Vibrio parahaemolyticus (Vp) is a marine halophilic bacterium that is commonly associated with oysters and shrimp. Human consumption of contaminated shellfish can result in Vp mediated gastroenteritis and severe diarrheal disease. Vp encodes two type 3 secretion systems (T3SS-1 and T3SS2) that have been functionally implicated in cytotoxicity and enterotoxicity respectively. In this study, we p...
متن کاملPrecise region and the character of the pathogenicity island in clinical Vibrio parahaemolyticus strains.
In this study, we determined the borders of the pathogenicity island in V. parahaemolyticus RIMD2210633 (Vp-PAI). Vp-PAI has features in common with Tn7 and other related elements at both terminal ends. Our findings indicate that the mobile element with a transposase which contains the DDE motif may have been involved in Vp-PAI formation.
متن کاملH-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus
Vibrio parahaemolyticus, a leading cause of seafood-associated diarrhea and gastroenteritis, harbors three major virulence gene loci T3SS1, Vp-PAI (T3SS1+tdh2) and T6SS2. As showing in this study, the nucleoid-associated DNA-binding regulator H-NS binds to multiple promoter-proximal regions in each of the above three loci to repress their transcription, and moreover H-NS inhibits the cytotoxici...
متن کامل